Predicting future changes in Muskegon River watershed (Michigan, USA) game fish under land-use alteration and climate change scenarios

Paul Steen
Jeff Schaeffer
USGS Great Lakes Science Center, Ann Arbor, MI

Mike Wiley
University of Michigan
Effect of temperature change and land use change on gamefish through 2100

Identify unprotected land and species- “gaps” in conservation

1. Data
2. Fish Distribution Models
3. Future Scenarios: Climate and land use change
Habitat Data

Landscape variables were measured on two scales for stream reach A:

B) Entire upstream riparian
C) Entire upstream watershed

1) % Land-use/land-cover (e.g. % urban)
2) % Surficial Geology (e.g. % coarse texture)

Distance Variables:
Distance from stream reach to:
1) Great Lake
2) Dam
3) Pond or Lake

In-Stream Variables estimated from landscape variables:
1) Water temperature (July mean)
2) Total Phosphorus
3) Exceedence flow
Fish Data

- Fish sampling records were obtained from the Michigan Department of Natural Resources Fish Collection System and Michigan Rivers Inventory (MRI).

- Years 1980-2003
- Presence/Absence Sampling
 - Shocking
 - Rotenone
 - Gillnets
 - Etc.
- Abundance
 - Two pass shocking
 - Standardized to fish/hectare

Grass Pickerel
State-wide stream fish distribution models

Longnose Dace
Brook Trout
Future Changes: Muskegon Watershed

Scenarios:
1. Land-use change
2. Landuse change, slow air temperature increase (3 C by 2100)
3. Landuse change, fast air temperature increase (5 C by 2100)

Water temperature is assumed to increase by 0.8 times the rate of air temperature increase.

Stefan 1993
Eaton and Scheller 1996
Brook Trout

FO = Frequency of Occurrence
Walleye

Small Rivers - left side of tree, not often found.

Large Rivers - right side of tree.

Catchment area (km²), 657

Total Phosphorus, 40 ppb

% Urbanization (watershed), 9%

Terminal Node 1
Train: 1 / 248
Test: 7 / 267
Combined: 8 / 515

Terminal Node 2
Train: 1 / 72
Test: 1 / 98
Combined: 2 / 170

Terminal Node 3
Train: 4 / 55
Test: 10 / 36
Combined: 14 / 91

Terminal Node 4
Train: 48 / 111
Test: 45 / 53
Combined: 93 / 164

Terminal Node 5
Train: 0 / 13
Test: 5 / 6
Combined: 5 / 19

Catchment area (km²), 237

FO: 0.02

FO: 0.01

FO: 0.15

FO: 0.57

FO: 0.26
Management Implications

Water Temperature, 20.2°C

90% Ex. Flow Yield, 0.0042

% Wetland (watershed), 13%

Terminal Node 1
Train: 36 / 61
Test: 88 / 152
Combined: 124 / 213
FO: 0.58

Terminal Node 2
Train: 17 / 83
Test: 64 / 156
Combined: 81 / 139
FO: 0.34

Terminal Node 3
Train: 98 / 139
Test: 176 / 210
Combined: 274 / 359
FO: 0.76

Terminal Node 4
Train: 11 / 176
Test: 37 / 122
Combined: 48 / 297
FO: 0.16

Terminal Node 5
Train: 16 / 54
Test: 30 / 73
Combined: 46 / 128
FO: 0.36

% Forest (watershed), 31%

Brown Trout

90% Ex. Flow Yield, 0.0042

% Wetland (watershed), 13%

Terminal Node 1
Train: 36 / 61
Test: 88 / 152
Combined: 124 / 213
FO: 0.58

Terminal Node 2
Train: 17 / 83
Test: 64 / 156
Combined: 81 / 139
FO: 0.34

Terminal Node 3
Train: 98 / 139
Test: 176 / 210
Combined: 274 / 359
FO: 0.76

Terminal Node 4
Train: 11 / 176
Test: 37 / 122
Combined: 48 / 297
FO: 0.16

Terminal Node 5
Train: 16 / 54
Test: 30 / 73
Combined: 46 / 128
FO: 0.36

Brown Trout
Water Temperature, 19.7 °C

Terminal Node 1
Train: 44 / 58
Test: 100 / 152
Combined: 144 / 210
FO: 0.69

Terminal Node 2
Train: 14 / 91
Test: 34 / 169
Combined: 48 / 260
FO: 0.18

Terminal Node 3
Train: 35 / 72
Test: 26 / 84
Combined: 61 / 156
FO: 0.39

Terminal Node 4
Train: 5 / 19
Test: 9 / 49
Combined: 14 / 68
FO: 0.21

Terminal Node 5
Train: 10 / 221
Test: 27 / 183
Combined: 37 / 404
FO: 0.09

Terminal Node 6
Train: 8 / 22
Test: 15 / 24
Combined: 23 / 46
FO: 0.50

Terminal Node 7
Train: 3 / 18
Test: 2 / 6
Combined: 5 / 24
FO: 0.21

90% Ex. Flow Yield, 0.0043

90% Ex. Flow Yield, 0.0049

% Agriculture (watershed), 26%

Left= below dam, Right= above dam

Agriculture (watershed), 20%

Rainbow Trout
Conclusions

• Climate change has winners and losers

• These types of models are useful for future planning.

• Other factors besides climate change have the potential to disrupt or aid fish communities in the future.

• Proper management of these factors can potentially mitigate some of the negative impacts of climate change.
Acknowledgements

My committee:
- Mike Wiley
- George Kling
- Paul Seelbach
- Jeff Schaeffer

Michigan DNR:
- Li Wang
- Troy Zorn
- Kevin Wehrly
- Arthur Cooper

Great Lakes GAP team:
- Dora Passino-Reader
- Jana Stewart
- Jim McKenna
- John Lyons
- Allain Rasolofoson

GL Science Center:
- Jaci Savino
- Leon Carl

University of Michigan:
- Catherine Riseng
- Solomon David

Fish Pictures are from:
- US FWS, public domain
- James Ford Bell Museum of Natural History, University of Minnesota

References:
